Autonomous Vehicles

Infrastructure Overview

Brisa

Conceição Magalhães 3rd AUTOCITS workshop, October 10th, 2017

Current Situation

1

Role of road infrastructure operators

Safety Traffic Management/Information Management/Information

Toll collection

Tolling as the most efficient way for finance infrastructure

Brisa is a key player within European spectrum

As *TSECAP* member

- Exchange information, experiences and best practices on road transport policies
- Fully implement the European "user pays" and "polluter pays" principles
- Strengthening the efficiency of their network and constantly improving the level of services provided

Applying state-of-the art technology and best operational practices

Asecap has relevant influence in Europe

Fully supports the Amsterdam Declaration

With direct impact on:

- Road safety
- Efficiency objectives
- Accessibility, comfort and social inclusion
- Environmental objectives

Active participation in major projects:

Automated driving will change the future of mobility in Europe

Europe, Europeans and Mobility

Europe, Europeans and Mobility

Number of miles driven per person has fallen by

8.5%

Use of public transport has increased

Change is happening quite fast...

Its real and happening

The "information everywhere" world will fully

disrupt the transportation status quo.

Digital age began

Costumers have more information than road infrastructure operators

Digital technology allows

Supply and demand matched real-time Reduce human error

Create multimodal transport systems

Travel smoothly from door to door Spur social innovation, ensuring mobility for all

Disruptive trends for road transport

1

2

5

Public Integrated **User-centred** Automation Pricing Mobility and and And and Services Intelligent **Payments** Safety Private Transport Innovation Networks

3

4

Access to products without the burdens of ownership - "sharing economy"

Smart systems, big data, IoT , AI, and smartphones "always-on digital world" Moving from a "throwaway culture" to a sustainable circular economy

Requiring increasingly more sophisticated technology

"25 years from now, car sharing will be the norm, and car ownership an anomaly."

Jeremy Rifkin, Author and Economist"

7 Drive Nov

"My smartphone is my preferred mode of transportation."

Rt. Hon. Patrick McLoughlin, UK Secretary of State for Transport

Automated driving is the major technological advancement

- Potential for change is great but...
- With new technologies come new risks
- New risks have been causing public fear and scepticism about AVs
- Motivations for their development include safety, efficiency and improvements in quality of life and work

"When" and "how" will AVs impact road infrastructure operators?

Estimated number of AVs by world region

In 10 to 14 years we might have a considerable hypothesis of having a nonnegligible percentage of autonomous vehicles circulating

Autonomous vehicles are already here

Automation Levels according SAE classification

Level 3 or higher will be firstly deployed on motorways

Level 3 of automation will be deployed first

- It relies closely on V2I and I2V communications
- It could be also enhanced by allowing V2V connectivity
- It will depend on the active role of road infrastructure operators

Road infrastructure operators will need to be prepared

And road operators

AVs

CVs

Key role of traffic management centers must be underlined

Managing Effectively and Safely

- Traffic
- Accidents and incidents

Regulating the traffic flow

- conventional vehicles
- automated vehicles

Providing new and dedicated:

- Road safety information/data
- Services
- Traffic information
- Providing conventional services via existing communications links

How will the road infrastructure and AVs interact with each other?

AVs interaction approaches

Relies on machine learning

Require, for minimum, from infrastructure

Improve actual road infrastructure standards

New standards for road maintenance

Replacing the need for actual infrastructure improvement

۲

Vehicle connection approach Based on vehicle cooperation and communication **Requires road** infrastructure to be connected and communicate with AVs Hybrid communication mix needs to be on board: ETSI ITS-G5 and cellular networks

Relies on wireless technology for communications

Vehicle connection approach

Main obstacles:

 Investments required to endue extensive portions of road network with wireless short range communications compliant transceivers: ITS-G5/DSRC

Different or complementary solutions are being studied:

- Cellular technology 5G for long-range communication
- Satellite based communications

The way through

LEFT REARWARD VEHICLE CAMERA

To enhance safety and create conditions for AVs success, road infrastructure must be properly adapted ...

MEDIUM RANGE VEHICLE CAMERA

REARWARD VEHICLE RIGHT CAMERA

Ongoing Projects

C-ROADS PORTUGAL

A2 and A6 intelligent motorways

SCOOP@F Part 2

Financed: European Commission Program CEF Transport

Goals:

- Develop a large scale test for some C-ITS services
- Promoting traffic and safety information sharing: V2I and I2V
- Ensuring interoperability tests with other pilots: Spain, France and Austria

Ensuring interoperability of C-ITS platforms across some European borders

Operational integration of CVs and AVs on motorways

Financed: BRISA - Auto-estradas de Portugal, S.A.

Duration: 2015 - 2020

Partners:

Goals:

- Support a smooth AVs implementation
- Support AVs operation, in mixed traffic environments
- Boost their interaction with physical infrastructure and its management
- Keep guaranteeing highest safety standards

Ensuring that the main benefits from AVs will be delivered minimizing risk

Road infrastructure is facing new challenges and needs to be prepared for convert them into opportunities: improving performance, becoming even more sustainable Adopting new and emergent technologies, such as AVs and C-ITS services, will allow motorway operators to achieve higher efficiency and value from their investments

Autonomous and vehicle connection approaches are being studied and can become a combined technology

To maximize AVs consumer acceptance, policymakers, regulators and motorway operators must work in coordinated and cooperative way

Automation of road traffic, it's all about safety and efficiency.

Mathias Wissmann, Former German Minister of Transport President of the German Association of the Automotive Industry (VDA)

Autonomous Vehicles

THANK YOU

Infrastructure Overview

Conceição Magalhães 3rd AUTOCITS workshop, October 10th, 2017